
Query-based Performance Comparison of
Graph Database and Relational Database

Thi-Thu-Trang Do
Faculty of Information Technology

Hung Yen University of Technology and Education
Hung Yen, Vietnam

trangdtt@utehy.edu.vn

Thai-Bao Mai-Hoang
Faculty of Information Technology

Hung Yen University of Technology and Education
Hung Yen, Vietnam

maihoangthaibao01@gmail.com

Van-Quyet Nguyen
Faculty of Information Technology

Hung Yen University of Technology and Education
Hung Yen, Vietnam

quyetict@utehy.edu.vn

Quyet-Thang Huynh∗
School of Information and Communication Technology

Hanoi University of Science and Technology
Ha Noi, Vietnam

thanghq@soict.hust.edu.vn

ABSTRACT
A graph database is a type of NoSQL database that uses graph
structure for semantic queries with nodes, edges, and properties to
represent and store data. It has been applied in many fields, such as
education, health, business, and social network, with many famous
applications such as Google, Facebook, and eBay. One of the main
advantages of the graph database is its effective performance in
data queries. This paper presents a comprehensive comparison of
the performance based on the execution time of a NoSQL graph
database named Neo4J with a popular relational database system,
MySQL, which is used as the underlying technology in developing
a software system. Query types are categorized into four groups:
selection/ search, recursion, aggregation, and pattern matching. We
examined representative questions for each group and executed
them on Neo4j and MySQL using a real-life dataset named Career
Village. The results show that Neo4j’s data query performance is
better than MySQL in most results.

CCS CONCEPTS
• Information systems→ Data management systems.

KEYWORDS
knowledge graph, graph database, relational database, complex
queries, query performance
ACM Reference Format:
Thi-Thu-Trang Do, Thai-Bao Mai-Hoang, Van-Quyet Nguyen, and Quyet-
Thang Huynh. 2022. Query-based Performance Comparison of Graph Data-
base and Relational Database. In The 11th International Symposium on In-
formation and Communication Technology (SoICT 2022), December 01–03,
2022, Hanoi–Halong bay, Vietnam. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3568562.3568648

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SoICT ’22, December 01–03, 2022, Hanoi–Halong bay, Vietnam
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9725-4/22/12. . . $15.00
https://doi.org/10.1145/3568562.3568648

1 INTRODUCTION
In recent years, knowledge graph has been applied in many fields,
from social applications to science [18]. Big companies like Google,
Facebook, eBay, Microsoft, NASA, and others use knowledge graphs
to improve their performance. It helps improve user experience,
provide more accurate recommendations, enhance search engines,
content management, impact analysis, real-time analysis, financial
services, retail services, health care, security, traffic, media, IoT, and
AI/ machine learning. A knowledge graph represents a structure
consisting of entities, relationships, and semantics, similar to human
knowledge. Graph databases often store knowledge graph data
and the logic that describes interconnections and context. Graph
databases can provide a unique and efficient chart store structure,
including some graph databases like Neo4j, ArangoDB, Amazon
Neptune, Dgraph, OrientDB, and GraphDB, where Neo4J is used
most widely.

One of the powers of graph databases is the data query perfor-
mance, especially in model-fit and query tasks exploiting relations
between nodes. It differs from the SQL data model using relation-
ships between tables.

There have been several studies on the comparison of graph
databases, especially Neo4j, with traditional relational databases,
mainly MySQL. These studies analyzed certain query aspects such
as recursion, partial matching, clustering, and path queries [1, 4, 6, 8,
9, 14]. Other studies have analyzed queries in specific areas likeWeb-
based applications[5], Heterogeneous IoT Data Management[15],
CRM Systems[17]. Furthermore, most of these studies mainly work
with quite simple queries.

This study evaluates the data query performance on four queries:
select/search, recursion, aggregation, and pattern matching be-
tween Neo4J and MySQL databases[3]. Moreover, complex queries
on graphs and relational databases also were realized to compare
the performance of the two query methods since working with a
large dataset. A complex query is a type of query whereby data
must be fetched from multiple joined tables in an SQL database
or by using a path with various links to different types of nodes
that can be recursive in graph databases. In aggregate computation,
complex queries are computed values on a large dataset.

https://doi.org/10.1145/3568562.3568648
https://doi.org/10.1145/3568562.3568648

SoICT ’22, December 01–03, 2022, Hanoi–Halong bay, Vietnam Do et al.

The rest of the paper is organized as follows. Section 2 presents
our survey of previous work related to performance analysis be-
tween MySQL and Neo4j. Section 3 represents the methods to
evaluate the performance of two database systems, graph databases
(Neo4J) and relational databases (MySQL). Section 4 introduces
the test environment and test results. Finally, the conclusions and
discussion are described in section 5.

2 RELATEDWORK
Several studies have been conducted to compare query performance
between SQL and graph databases, especially Neo4j. Study results
concluded that the performance of the graph databases is better than
that of the conventional databases. [2, 7, 16]. However, these studies
were performed on either simple queries or small-sized datasets. In
[2], S. Batra et al. used datasets with 100, 500 rows/objects stored
in four tables (including users, friends, movies, and favorite ac-
tors), three types of nodes, and three relationships corresponding
to MySQL and graph database, respectively. The derived results
showed that the query time on MySQL was 2-30 times slower than
Neo4j. In [16], a comparison between MySQL and Neo4j is pre-
sented. The authors used three queries with 10-10,000 records, and
one was used to feed the probabilistic database data capable of
handling unstructured data. Study results showed that MySQL was
faster and saved memory than Neo4j; Neo4j was better than MySQL
in terms of flexibility. However, the relational schema on MySQL
only includes two join tables, and the schema on the graph consists
of 5 connected entities. The queries use up to two join tables/related
entities and focus on the selection/search query type. Holzschuher
et al.[7] tested and compared the performance of Neo4j and MySQL
using different backend solutions. The authors used Cypher, Grem-
lin, and SQL in this research to write queries. The study results
showed Neo4j significantly improved performance comparison
since the increased database size. Gremlin and Cypher query on
Neo4j were executed faster than those using MySQL with JPA.

Also many studies focused on this topic, for example: [2, 7, 10,
11, 13, 16] used search/selection query and the aggregate query
method; [12], the author used five query tasks for job price, job
price with items, invoice price, invoice price for a given customer. . . ;
[9] the Recursive queries are presented; In [6], a comparison be-
tween Neo4J and relational databases in pattern matching queries is
described; Clustering queries are introduced in [8], and path queries
are in [1, 8, 14]; and the following studies were several areas were
mention like Social Network Analysis [4], Web-based applications
[5], Heterogeneous IoT Data Management[15], CRM Systems [17].

3 PERFORMANCE COMPARISON OF GRAPH
DATABASE AND RELATIONAL DATABASE
USING QUERY-BASED TECHNIQUES

In database systems, data queries have many different purposes.
Based on query questions, classification is split into four queries:
selection/search, related or recursive data, aggregation, and pattern
matching[3]. We take three illustrative examples for each query
type and compare the performance between Neo4j and MySQL.

3.1 Test Database
The test database is a general example of Web application infor-
mation systems. Different types of information are associated with
professionals and students. The dataset is taken from CareerVil-
lage.org, a nonprofit that crowdsources career advice for under-
served youth. This platform uses questions and answers similar to
the formulation method of the StackOverflow/Quora website. The
purpose is to provide answers in many career fields for students.

Table 1: The numbers of the generated rows/objects inMySQL
and Neo4j

Table/Object Row in MySQL Object in Neo4j
professionals 28,152 28,152 nodes
students 30,971 30,971 nodes
questions 23,931 23,931 nodes
answers 51,123 51,123 nodes
comments 14,966 14,966 nodes
tags 16,269 16,269 nodes
tag_questions 76,553 76,553 edges
tag_users 136,663 135,907 edges
groups 49 49 nodes
group_memberships 1,038 1,038 edges
emails 1,850,101 1,850,101 nodes
matches 4,316,275 1,116,275 edges
schools_memberships/
schools 5,638 2,706 nodes

The relational database has 13 tables corresponding to students,
professionals, questions, answers, comments, tags, groups, and
items, which contain the professional information, student informa-
tion, the question asked by the professional or student, the answer
information, and the comment for the question. The tags and the
groups are categorized questions, professionals, and students into
topics of interest. Figure 1 shows the database structure as a re-
lational database schema. Symbols illustrate how the tables are
associated together.

Our graph database schema represents entities as nodes and rela-
tionships as directed edges. Professional, student, question, answer,
comment, tag, group, and several objects are represented as nodes.
The attributes of relationships are represented on edges. Figure
2 introduces to the graph database structure. Table 1 shows the
numbers of rows/objects generated for the dataset. Each row in the
table has two columns. One presents the number of rows in the
relational database, and another column represents the number of
nodes in the graph database.

3.2 Test Queries
This section presents representative query questions per group on
MySQL and Neo4J.

• Selection/Search
Queries in this grouping focus on finding and selecting a group of
data from a database by one or more criteria. This type of question
does not require the use of rich relationships in the data. Examples
of queries are:

Query-based Performance Comparison of
Graph Database and Relational Database SoICT ’22, December 01–03, 2022, Hanoi–Halong bay, Vietnam

Figure 1: Relational database structure

Q1: Looking for professionals in a specific tag?

SQL
SELECT p.* FROM professionals p
JOIN tag_users tu ON
p.professionals_id = tu.tag_users_user_id

JOIN tags t ON tu.tag_users_tag_id = t.tags_tag_id
WHERE tags_tag_name = ’college’;

Cypher
MATCH (p:professionals)-[]->(t:tags)
WHERE t.tags_tag_name=’college’
RETURN p,t

Q2: Looking for students in a specific group and interested in a
specific tag?

SQL
SELECT * FROM students s
JOIN group_memberships gm ON
students_id = gm.group_memberships_user_id

JOIN groups g ON
g.groups_id = gm.group_memberships_group_id

JOIN tag_users tu ON
tu.tag_users_user_id = s.students_id

JOIN tags t ON t.tags_tag_id = tu.tag_users_tag_id
WHERE t.tags_tag_name = ’college’
AND g.groups_group_type = ’youth program’;

Cypher
MATCH (t:tags)<-[:HAS_TAG]-(s:students)-

[:MEMBER_IN]->(b)
WHERE t.tags_tag_name=’college’
AND b.groups_group_type=’youth program’
RETURN s,t,b

Q3: Looking for all emails received by a particular professional?

SoICT ’22, December 01–03, 2022, Hanoi–Halong bay, Vietnam Do et al.

Figure 2: Graph database structure

SQL
SELECT * FROM professionals p
JOIN emails e ON
p.professionals_id = e.emails_recipient_id

WHERE p.professionals_id =
’0079e89bf1544926b98310e81315b9f1’;

Cypher
MATCH (p:professionals{professionals_id:
’0079e89bf1544926b98310e81315b9f1’})-
[:GOT_EMAIL]->(e:emails)

RETURN e

• Recursive data

This set of queries explores relationships between entities and is
used to query hierarchical data, such as an organizational structure,
bill-of-materials, and document hierarchy. Recursive queries are
made to call themselves many times in a row until they reach some
exit or termination condition. Some examples for questions:

Q4: Looking for the questions with answers recursively many
times?

SQL
WITH RECURSIVE answer_replies AS(
SELECT answers_id, answers_author_id,
answers_question_id, answers_date_added,
answers_body

FROM answers WHERE answers_question_id
IS not null UNION all
SELECT a.answers_id, a.answers_author_id,
a.answers_question_id, a.answers_date_added,
a.answers_body

FROM answers a
INNER JOIN answer_replies ar ON ar.answers_id =
a.answers_question_id)

SELECT * FROM answer_replies ar
LEFT JOIN questions q ON ar.answers_question_id =
q.questions_id;

Cypher
MATCH (q:questions)<-[:IS_REPLY_TO*1..]-(a:answer)
RETURN q,a

Q5: Looking for questions with answers recursively twice?

Query-based Performance Comparison of
Graph Database and Relational Database SoICT ’22, December 01–03, 2022, Hanoi–Halong bay, Vietnam

SQL
WITH RECURSIVE answer_replies AS(
SELECT 1 as level,answers_id, answers_author_id,
answers_question_id, answers_date_added,
answers_body

FROM answers WHERE answers_question_id
IS not null UNION all
SELECT level+1, a.answers_id,
a.answers_author_id, a.answers_question_id,
a.answers_date_added, a.answers_body

FROM answers a
INNER JOIN answer_replies ar ON
ar.answers_id = a.answers_question_id

WHERE level <=2)
SELECT * FROM answer_replies ar
LEFT JOIN questions q ON
ar.answers_question_id = q.questions_id

Cypher
MATCH (q:questions)<-[:IS_REPLY_TO*1..2]-
(a:Answers)
RETURN q,a

Q6: Looking for questions with answers recursively 3 times?

SQL
WITH RECURSIVE answer_replies AS(
SELECT 1 as level,answers_id, answers_author_id,
answers_question_id, answers_date_added,
answers_body

FROM answers WHERE answers_question_id
IS not null UNION all
SELECT level+1, a.answers_id,
a.answers_author_id, a.answers_question_id,
a.answers_date_added, a.answers_body

FROM answers a
INNER JOIN answer_replies ar ON
ar.answers_id = a.answers_question_id

WHERE level <=3)
SELECT * FROM answer_replies ar
LEFT JOIN questions q ON
ar.answers_question_id = q.questions_id

Cypher
MATCH (q:questions)<-[:IS_REPLY_TO*1..3]-
(a:Answers)
RETURN q,a

• Aggregation

This group of questions is used to find results from aggregated
information from the database. Some examples of questions:

Q7: Count the number of professionals who answered the ques-
tions.

SQL
SELECT count(professionals_id)
FROM professionals p JOIN answers a ON
p.professionals_id = a.answers_question_id;

Cypher
MATCH (p:professionals)-[]->(a:Answers)
RETURN count(p)

Q8: Count the number of professionals of a specific tag.

SQL
SELECT count(*) FROM(
SELECT DISTINCT p.* FROM professionals p
JOIN tag_users tu ON p.professionals_id =
tu.tag_users_user_id

JOIN tags t ON tu.tag_users_tag_id = t.tags_tag_id
WHERE t.tags_tag_name = ’college’) AS temp;

Cypher
MATCH (p:professionals)-[:HAS_TAG]->(t:tags)
WHERE t.tags_tag_name=’college’
RETURN count(p)

Q9: Which tag has the most professionals?

SQL
SELECT tags.tags_tag_id, tags_tag_name,
COUNT(p.professionals_id)
AS number_of_professionals FROM tags
JOIN tag_users tu
ON tags.tags_tag_id = tu.tag_users_tag_id

JOIN professionals p ON p.professionals_id =
tu.tag_users_user_id

GROUP BY tags.tags_tag_id, tags_tag_name
ORDER BY COUNT(p.professionals_id)
DESC LIMIT 1;

Cypher
MATCH (p:professionals)-[:HAS_TAG]->(t:tags)
RETURN t.tags_tag_name AS TagName,
COUNT(p) ORDER BY COUNT(p) DESC
LIMIT 1

• Pattern matching
Pattern matching allows for finding patterns in the data. Pattern

matching is based on how entities are related to each other. The
query type is often used in cases like recommendation engines,
fraud detection, or intrusion detection. Some questions might in-
clude the following:

Q10: Looking for the question answered in tags?

SoICT ’22, December 01–03, 2022, Hanoi–Halong bay, Vietnam Do et al.

SQL
SELECT q.questions_id, t.tags_tag_id, a.answers_id
FROM tags t JOIN tag_questions tq
ON t.tags_tag_id = tq.tag_questions_tag_id
JOIN questions q ON tq.tag_questions_question_id =
q.questions_id JOIN answers a

ON a.answers_question_id = questions_id;
Cypher

MATCH (a:Answers)-[]->(q:questions)-[]->(t:tags)
RETURN a,q,t

Q11: Looking for students and professionals with the same
group?

SQL
SELECT g.groups_id, professionals_id, students_id
FROM groups g
JOIN group_memberships gm ON g.groups_id =
gm.group_memberships_group_id

JOIN (SELECT group_memberships_group_id
AS group_id, professionals_id

FROM professionals p
JOIN group_memberships gm1
ON gm1.group_memberships_user_id =
p.professionals_id) pg ON pg.group_id =
gm.group_memberships_group_id

JOIN (SELECT group_memberships_group_id
AS group_id, students_id

FROM students s JOIN group_memberships gm2 ON
s.students_id = gm2.group_memberships_user_id) sg
ON sg.group_id= gm.group_memberships_group_id;

Cypher
MATCH (p:professionals)-[]->(g:groups)<-[]-(s:students)
RETURN p, g, s

Q12: Looking for patterns that students and experts in the same
tag?

SQL
SELECT pt.tags_id, st.students_id, pt.professionals_id
FROM tags t JOIN tag_users tu
ON t.tags_tag_id = tu.tag_users_tag_id JOIN (
SELECT u.tag_users_tag_id AS tags_id,

professionals_id
FROM professionals p JOIN tag_users u
ON p.professionals_id = u.tag_users_user_id) pt
ON pt.tags_id= t.tags_tag_id JOIN (
SELECT u.tag_users_tag_id AS tags_id, students_id
FROM students s JOIN tag_users u
ON s.students_id = u.tag_users_user_id) st

ON st.tags_id = t.tags_tag_id
LIMIT 100000;

Cypher
MATCH (p:professionals)-[]->(t:tags)<-[]-(s:students)
RETURN p, t, s LIMIT 100000

4 EVALUATION RESULTS
4.1 Test Settings
The tests were executed in a Ubuntu Server with the following
specifications:

• OS: Ubuntu 19.10, 64-bit
• Memory: 32GB
• Processor: Intel Core i7-8700 CPU 3.20GHz x 12
• Graphics: GeForce RTX2080 Ti/PCIe/SSE2
• Disk: 2.0 TB

MySQL versions 8.0.30 and Neo4j community edition version 4.4.5
were installed on this computer.

4.2 Test Results

Table 2: The query performance results on MySQL and Neo4J
for the type of queries

Type of
queries Queries Neo4j MySQL

Q1 7 ms 8 ms
Selection/search Q2 9 ms 270 ms

Q3 13 ms 39 ms
Q4 2 ms 292 ms

Related or recursive data Q5 3 ms 312 ms
Q6 3 ms 314 ms
Q7 31 ms 118 ms

Aggregation Q8 15 ms 22 ms
Q9 86 ms 429 ms
Q10 4 ms 4 ms

Pattern matching Q11 5 ms 49 ms
Q12 1 ms 8 ms

Table 2 presents our study results. It illustrated that Neo4J out-
performed the MySQL relational database system depending on the
complexity of the data query. The higher the query complexity, the
more Neo4j shows superiority over MySQL.

Query-based Performance Comparison of
Graph Database and Relational Database SoICT ’22, December 01–03, 2022, Hanoi–Halong bay, Vietnam

The questions of Aggregation type get aggregate information
from the data,MySQL still does a great jobwith this type of question,
but Neo4J’s execution time is 1-5 times faster. The Pattern matching
query group gives Neo4J results 1-10 times faster. The Select/Search
type has Neo4J’s query time of 1-30 times faster than MySQL. The
Recursive data type has Neo4J query performance up to 146 times
faster. For questions that require rich relationships in the data
and use complex joins across many different tables/objects, Neo4J
delivers superior query execution times compared to MySQL. Also,
statements written in Cypher are often more concise than those
written in SQL.

5 CONCLUSIONS
This paper presented an overview of queries categorized into four
groups: selection/search, recursion, aggregation, and pattern match-
ing. Second, we conducted results on data queries for Neo4j (a repre-
sentative of the graph database) and MySQL (a representative of the
relational database). Our results showed that in terms of execution
time, the graph database outperforms the relational database up
to 146 times when querying with complex data and big data. In
the near future, we plan to add more tests with other datasets in
different sectors, such as banking, the stock market, and ERP. We
will compare the results on other aspects of system performance,
such as memory usage, power consumption, and implementation
complexities.

REFERENCES
[1] Zahid Abul-Basher, Nikolay Yakovets, Parke Godfrey, Shadi Ghajar-Khosravi, and

Mark H Chignell. 2017. Tasweet: optimizing disjunctive regular path queries in
graph databases. In EDBT/ICDT 2017 joint conference 20th international conference
on extending database technology. https://doi. org/10.5441/002/edbt.

[2] Shalini Batra and Charu Tyagi. 2012. Comparative analysis of relational and
graph databases. International Journal of Soft Computing and Engineering (IJSCE)
2, 2 (2012), 509–512.

[3] Dave Bechberger and Josh Perryman. 2020. Graph Databases in Action. Manning
Publications.

[4] Wenfei Fan. 2012. Graph pattern matching revised for social network analysis.
In Proceedings of the 15th International Conference on Database Theory. 8–21.

[5] Cornelia Gyorödi, Robert Gyorödi, and Roxana Sotoc. 2015. A comparative study
of relational and non-relational database models in a Web-based application.
International Journal of Advanced Computer Science and Applications 6, 11 (2015),
78–83.

[6] Jürgen Hölsch, Tobias Schmidt, and Michael Grossniklaus. 2017. On the perfor-
mance of analytical and pattern matching graph queries in neo4j and a relational
database. In EDBT/ICDT 2017 Joint Conference: 6th International Workshop on
Querying Graph Structured Data (GraphQ).

[7] Florian Holzschuher and René Peinl. 2013. Performance of graph query languages:
comparison of cypher, gremlin and native access in neo4j. In Proceedings of the
Joint EDBT/ICDT 2013 Workshops. 195–204.

[8] Yun-Wu Huang, Ning Jing, and Elke A Rundensteiner. 1996. Effective graph
clustering for path queries in digital map databases. In Proceedings of the fifth
international conference on Information and knowledge management. 215–222.

[9] Louis Jachiet, Pierre Genevès, Nils Gesbert, and Nabil Layaïda. 2020. On the
optimization of recursive relational queries: Application to graph queries. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management of
Data. 681–697.

[10] Wisal Khan, Waqas Ahmad, Bin Luo, and Ejaz Ahmed. 2019. SQL Database with
physical database tuning technique and NoSQL graph database comparisons.
In 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation
Control Conference (ITNEC). IEEE, 110–116.

[11] Wisal Khan, Waseem Shahzad, et al. 2017. Predictive performance comparison
analysis of relational & nosql graph databases. International Journal of Advanced
Computer Science and Applications 8, 5 (2017).

[12] Petri Kotiranta, Marko Junkkari, and Jyrki Nummenmaa. 2022. Performance of
Graph and Relational Databases in Complex Queries. Applied Sciences 12, 13
(2022), 6490.

[13] Surajit Medhi and Hemanta K Baruah. 2017. Relational database and graph data-
base: A comparative analysis. Journal of process management and new technologies
5, 2 (2017), 1–9.

[14] Van-Quyet Nguyen and Kyungbaek Kim. 2017. Estimating the evaluation cost of
regular path queries on large graphs. In Proceedings of the Eighth International
Symposium on Information and Communication Technology. 92–99.

[15] Van-Quyet Nguyen, Van-Hau Nguyen, et al. 2020. An efficient graph modeling
approach for storing and analyzing heterogeneous IoT data. UTEHY Journal of
Science and Technology 27 (2020), 21–27.

[16] Rahmatian Jayanty Sholichah, Mahmud Imrona, and Andry Alamsyah. 2020. Per-
formance Analysis of Neo4j and MySQL Databases using Public Policies Decision
Making Data. In 2020 7th International Conference on Information Technology,
Computer, and Electrical Engineering (ICITACEE). IEEE, 152–157.

[17] Victor Winberg and Jan Zubac. 2019. A comparison of relational and graph
databases for crm systems. LU-CS-EX 2019-09 (2019).

[18] Xiaohan Zou. 2020. A survey on application of knowledge graph. In Journal of
Physics: Conference Series, Vol. 1487. IOP Publishing, 012016.

	Abstract
	1 Introduction
	2 Related Work
	3 Performance Comparison of Graph Database and Relational Database using Query-based Techniques
	3.1 Test Database
	3.2 Test Queries

	4 Evaluation Results
	4.1 Test Settings
	4.2 Test Results

	5 Conclusions
	References

